Quantum technologies require methods for preparing and manipulating entangled multiparticle states. However, the problem of determining whether a given quantum state is entangled or separable is known to be an NP-hard problem in general, and even the task of detecting entanglement breakdown for a given class of quantum states is difficult. In this work, we develop an approach for revealing entanglement breakdown using a machine learning technique, which is known as 'learning by confusion'. We consider a family of quantum states, which is parameterized such that there is a single critical value dividing states within this family on separate and entangled. We demonstrate the 'learning by confusion' scheme allows determining the critical value. Specifically, we study the performance of the method for the two-qubit, two-qutrit, and two-ququart entangled state, where the standard entanglement measures do not work efficiently. In addition, we investigate the properties of the local depolarization and the generalized amplitude damping channel in the framework of the confusion scheme. Within our approach and setting the parameterization of special trajectories to construct W shapes, we obtain an entanglement-breakdown 'phase diagram' of a quantum channel, which indicates regions of entangled (separable) states and the entanglement-breakdown region. Then we extend the way of using the 'learning by confusion' scheme for recognizing whether an arbitrary given state is entangled or separable. We show that the developed method provides correct answers for a variety of states, including entangled states with positive partial transpose (PPT). We also present a more practical version of the method, which is suitable for studying entanglement breakdown in noisy intermediate-scale quantum (NISQ) devices. We demonstrate its performance using an available cloud-based IBM quantum processor.


翻译:量子技术需要准备和操控纠缠的多质状态的方法。 然而, 确定一个特定的量子状态是纠缠的还是分解的, 这个问题一般已知是一个NP- 硬的问题, 甚至检测某类量子状态的纠缠分解的任务也是困难的。 在这项工作中, 我们开发了一种方法, 使用机器学习技术来揭示纠缠的分解。 这个技术被称为“ 以混乱方式学习 ” 。 我们考虑的是一组量子状态, 它是参数化的, 使得这个家族内部有一个单一的临界值分裂状态。 我们用混乱方式来显示“ 通过学习”的分解方法, 具体地说“ 分解” 方法可以确定关键值。 具体地说, 我们研究的是两种量子、 两Q和两Q的分解方法的分解方法的性能, 标准离心状态的分解方法不能有效发挥作用。 此外, 我们研究当地分解的分解和整个分解状态的分解渠道的特性。 在我们的方法中, 确定一个分解的分解的分解方法的分解的分解方式, 也显示一个分解的分解的分解的分解的分解的分解区域。 。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Arxiv
11+阅读 · 2021年2月17日
Arxiv
19+阅读 · 2018年10月25日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员