Network-on-chip (NoC) architectures rely on buffers to store flits to cope with contention for router resources during packet switching. Recently, reversible multi-function channel (RMC) buffers have been proposed to simultaneously reduce power and enable adaptive NoC buffering between adjacent routers. While adaptive buffering can improve NoC performance by maximizing buffer utilization, controlling the RMC buffer allocations requires a congestion-aware, scalable, and proactive policy. In this work, we present RACE, a novel reinforcement learning (RL) framework that utilizes better awareness of network congestion and a new reward metric ("falsefulls") to help guide the RL agent towards better RMC buffer control decisions. We show that RACE reduces NoC latency by up to 48.9%, and energy consumption by up to 47.1% against state-of-the-art NoC buffer control policies.
翻译:网络- 芯片( NOC) 架构依赖缓冲器存储滑块, 以应对在包件转换过程中路由资源争议。 最近, 提议了可逆的多功能通道缓冲器, 以同时减少电力, 并让相邻路由器之间能够进行适应性NOC缓冲。 虽然适应性缓冲可以通过最大限度地使用缓冲来改善NOC的性能, 但控制RMC缓冲分配需要一种耐堵、可缩和积极主动的政策。 在这项工作中, 我们介绍了RACE( RACE), 这是一种新型的强化学习( RL) 框架, 利用对网络拥堵的更好认识和新的奖励度量度( “ falsefulls ” ), 帮助引导RL 代理器做出更好的RMC 缓冲控制决定。 我们显示, RACE 将NAC 延缓冲力降低48.9%, 能源消耗量高达47.1%, 以对抗最先进的NOC 缓冲控制政策 。