Earlier studies have shown that classification accuracies of Bayesian networks (BNs) obtained by maximizing the conditional log likelihood (CLL) of a class variable, given the feature variables, were higher than those obtained by maximizing the marginal likelihood (ML). However, differences between the performances of the two scores in the earlier studies may be attributed to the fact that they used approximate learning algorithms, not exact ones. This paper compares the classification accuracies of BNs with approximate learning using CLL to those with exact learning using ML. The results demonstrate that the classification accuracies of BNs obtained by maximizing the ML are higher than those obtained by maximizing the CLL for large data. However, the results also demonstrate that the classification accuracies of exact learning BNs using the ML are much worse than those of other methods when the sample size is small and the class variable has numerous parents. To resolve the problem, we propose an exact learning augmented naive Bayes classifier (ANB), which ensures a class variable with no parents. The proposed method is guaranteed to asymptotically estimate the identical class posterior to that of the exactly learned BN. Comparison experiments demonstrated the superior performance of the proposed method.


翻译:先前的研究显示,由于特性变量,通过最大限度地增加一个等级变量的有条件日志概率(CLL)获得的Bayesian网络的分类精度,根据特性变量,比通过最大限度地增加边际可能性(ML)获得的分类精度要高。然而,早期研究中两个得分的性能差异可能归因于它们使用了近似学习算法,而不是精确的算法。本文比较了Besian网络的分类精度,即使用CLLL的近似学习与使用ML的精确学习。结果显示,通过最大限度地提高一个等级变量而获得的BNCL获得的分类精度比通过为大数据最大限度地增加CLLL获得的分类精度要高。但是,结果还表明,使用ML的精确学习BN的精度分率比在样本大小小和等级变量有众多父母时采用的其他方法差得多。为了解决问题,我们建议精确的学习增强天种贝贝的分类精度,这能确保没有父母参与的等级变量。建议的方法保证了对相同的级图像的精确比较方法进行模拟估计。

0
下载
关闭预览

相关内容

在机器学习中,朴素贝叶斯分类器是一系列以假设特征之间强(朴素)独立下运用贝叶斯定理为基础的简单概率分类器。 朴素贝叶斯自20世纪50年代已广泛研究。在20世纪60年代初就以另外一个名称引入到文本信息检索界中,并仍然是文本分类的一种热门(基准)方法,文本分类是以词频为特征判断文件所属类别或其他(如垃圾邮件、合法性、体育或政治等等)的问题。通过适当的预处理,它可以与这个领域更先进的方法(包括支持向量机)相竞争。它在自动医疗诊断中也有应用
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月8日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
10+阅读 · 2021年2月26日
Stock Chart Pattern recognition with Deep Learning
Arxiv
6+阅读 · 2018年8月1日
Arxiv
11+阅读 · 2018年7月8日
Arxiv
5+阅读 · 2018年1月30日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年9月8日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
10+阅读 · 2021年2月26日
Stock Chart Pattern recognition with Deep Learning
Arxiv
6+阅读 · 2018年8月1日
Arxiv
11+阅读 · 2018年7月8日
Arxiv
5+阅读 · 2018年1月30日
Top
微信扫码咨询专知VIP会员