We define wedge-lifted codes, a variant of lifted codes, and we study their locality properties. We show that (taking the trace of) wedge-lifted codes yields binary codes with the $t$-disjoint repair property ($t$-DRGP). When $t = N^{1/2d}$, where $N$ is the block length of the code and $d \geq 2$ is any integer, our codes give improved trade-offs between redundancy and locality among binary codes.
翻译:我们定义 wedge-lefted code, 一种取消代码的变体,我们研究它们的位置属性。 我们发现(通过追踪) wedge-lefted code 产生与$t$-disign condition Property ($t$-DRGP)的二进制代码。 当$t = N ⁇ 1/2d}美元($N$是代码的区块长度)和$d\geq 2美元($d geq 2)是任何整数时,我们的代码在冗余和二进制代码之间提供了更好的权衡。