We consider the identification of spatially distributed parameters under $H^1$ regularization. Solving the associated minimization problem by Gauss-Newton iteration results in linearized problems to be solved in each step that can be cast as boundary value problems involving a low-rank modification of the Laplacian. Using algebraic multigrid as a fast Laplace solver, the Sherman-Morrison-Woodbury formula can be employed to construct a preconditioner for these linear problems which exhibits excellent scaling w.r.t. the relevant problem parameters. We first develop this approach in the functional setting, thus obtaining a consistent methodology for selecting boundary conditions that arise from the $H^1$ regularization. We then construct a method for solving the discrete linear systems based on combining any fast Poisson solver with the Woodbury formula. The efficacy of this method is then demonstrated with scaling experiments. These are carried out for a common nonlinear parameter identification problem arising in electrical resistivity tomography.
翻译:我们考虑在1美元正规化下确定空间分布参数。 通过高斯-纽顿迭代解决相关的最小化问题,导致每一步的线性问题,可以作为边界值问题解决,涉及低调修改拉普拉钱。利用代数多格格作为快速拉普莱特解答器,可以使用谢尔曼-莫里松-Woodbury公式为这些线性问题建立一个先决条件,这些线性问题显示出优于W.r.t.的相关问题参数。我们首先在功能环境中开发了这一方法,从而获得选择1美元正规化产生的边界条件的一致方法。我们随后在将任何快速普瓦森解答器与Woodbury公式相结合的基础上,构建了一种解决离散线性系统的方法,然后通过规模实验来展示这一方法的功效。这些方法用于一个常见的非线性参数识别在电阻断层摄影中产生的问题。