In this paper, we develop the constrained energy minimizing generalized multiscale finite element method (CEM-GMsFEM) with mixed boundary conditions (Dirichlet and Neumann) for the elasticity equations in high contrast media. By a special treatment of mixed boundary conditions separately, and combining the construction of the relaxed and constraint version of the CEM-GMsFEM, we discover that the method offers some advantages such as the independence of the target region's contrast from precision, while the sizes of oversampling domains have a significant impact on numerical accuracy. Moreover, to our best knowledge, this is the first proof of the convergence of the CEM-GMsFEM with mixed boundary conditions for the elasticity equations given. Some numerical experiments are provided to demonstrate the method's performance.
翻译:在本文中,我们开发了限制能源以最小化通用多级限制元素方法(CEM-GMSFEM),该方法具有混合边界条件(Drichlet和Neumann),用于在高对比介质中进行弹性方程式。通过分别对混合边界条件进行特殊处理,并将CEM-GMSFEM的宽松和约束版本的构建结合起来,我们发现该方法具有一些优势,如目标区域与精确度的对比,而过度抽样区域的规模对数字准确度有重大影响。此外,据我们所知,这是CEM-GMSFEM与给出弹性方程式的混合边界条件相融合的第一个证据。我们提供了一些数字实验,以证明该方法的性能。