We propose a Bayesian tensor-on-tensor regression approach to predict a multidimensional array (tensor) of arbitrary dimensions from another tensor of arbitrary dimensions, building upon the Tucker decomposition of the regression coefficient tensor. Traditional tensor regression methods making use of the Tucker decomposition either assume the dimension of the core tensor to be known or estimate it via cross-validation or some model selection criteria. However, no existing method can simultaneously estimate the model dimension (the dimension of the core tensor) and other model parameters. To fill this gap, we develop an efficient Markov Chain Monte Carlo (MCMC) algorithm to estimate both the model dimension and parameters for posterior inference. Besides the MCMC sampler, we also develop an ultra-fast optimization-based computing algorithm wherein the maximum a posteriori estimators for parameters are computed, and the model dimension is optimized via a simulated annealing algorithm. The proposed Bayesian framework provides a natural way for uncertainty quantification. Through extensive simulation studies, we evaluate the proposed Bayesian tensor-on-tensor regression model and show its superior performance compared to alternative methods. We also demonstrate its practical effectiveness by applying it to two real-world datasets, including facial imaging data and 3D motion data.
翻译:我们建议采用巴耶斯的温度-摄氏回归法,在塔克回归系数分解强度的基础上,预测另一个任意维度的多维数组(强),预测另一个任意维度的多维维度(强),以塔克回归系数分解为根据。使用塔克分解的传统退缩方法,要么假定核心振标的维度,要么通过交叉校准或某种模型选择标准来估计。然而,任何现有方法都不能同时估计模型维度(核心振幅的维度)和其他模型参数。为填补这一空白,我们开发了高效的马可夫连锁蒙特卡洛(MCMC)算法,以估计后退推推推的模型维度和参数。除了MCMC取样器外,我们还开发了超快的优化基计算算法,据此计算出参数的极限估计值最高值,并通过模拟反射算法和模拟算法来优化模型。拟议的巴耶西亚的温度-摄氏临界回归(MMC)回归模型,我们还通过广泛的模拟研究来评估拟议的巴耶斯-温度-摄氏实际回归模型,并展示其高性数据,包括两个模型。