Consider a sequence of LexBFS vertex orderings {\sigma}1, {\sigma}2, . . . where each ordering {\sigma}i is used to break ties for {\sigma}i+1. Since the total number of vertex orderings of a finite graph is finite, this sequence must end in a cycle of vertex orderings. The possible length of this cycle is the main subject of this work. Intuitively, we prove for graphs with a known notion of linearity (e.g., interval graphs with their interval representation on the real line), this cycle cannot be too big, no matter which vertex ordering we start with. More precisely, it was conjectured in [9] that for cocomparability graphs, the size of this cycle is always 2, independent of the starting order. Furthermore [27] asked whether for arbitrary graphs, the size of such a cycle is always bounded by the asteroidal number of the graph. In this work, while we answer this latter question negatively, we provide support for the conjecture on cocomparability graphs by proving it for the subclass of domino-free cocomparability graphs. This subclass contains cographs, proper interval, interval, and cobipartite graphs. We also provide simpler independent proofs for each of these cases which lead to stronger results on this subclasses.
翻译:考虑 LexBFS 顶端订购的序列 $sigma}1, {sigma}2,. 。. 每一个按 {sigma} i 用于为 {sigma} +1 断开连接 。 由于一个限制图形的顶端订购总数是有限的, 这个序列必须结束于一个顶端订购的循环。 这个周期的可能长度是这项工作的主要主题。 直观地, 我们证明图表有已知的线性概念( 例如, 间距图及其在真实线上的间距表示) 的图形, 这个循环不会太大, 这个循环不会太大, 也不是我们开始点点的顶端命令 。 更确切地说, 在 [ 9] 中, 这个可比较性图表的总数是 2, 这个循环的大小必须是独立于起始顺序的。 此外 [27] 询问该循环的任意图形大小是否总是被小行星数所绑定 。 在这项工作中, 我们否定了后一个问题, 我们支持在 combectex comex combable gration graphable graphil graphal graphal cal cal cal cal clasbes subles subiss.