Mathematical models are essential for understanding and making predictions about systems arising in nature and engineering. Yet, mathematical models are a simplification of true phenomena, thus making predictions subject to uncertainty. Hence, the ability to quantify uncertainties is essential to any modelling framework, enabling the user to assess the importance of certain parameters on quantities of interest and have control over the quality of the model output by providing a rigorous understanding of uncertainty. Peridynamic models are a particular class of mathematical models that have proven to be remarkably accurate and robust for a large class of material failure problems. However, the high computational expense of peridynamic models remains a major limitation, hindering outer-loop applications that require a large number of simulations, for example, uncertainty quantification. This contribution provides a framework to make such computations feasible. By employing a Multilevel Monte Carlo (MLMC) framework, where the majority of simulations are performed using a coarse mesh, and performing relatively few simulations using a fine mesh, a significant reduction in computational cost can be realised, and statistics of structural failure can be estimated. The results show a speed-up factor of 16x over a standard Monte Carlo estimator, enabling the forward propagation of uncertain parameters in a computationally expensive peridynamic model. Furthermore, the multilevel method provides an estimate of both the discretisation error and sampling error, thus improving the confidence in numerical predictions. The performance of the approach is demonstrated through an examination of the statistical size effect in quasi-brittle materials.
翻译:数学模型对于了解自然和工程中产生的系统并作出预测至关重要,然而,数学模型是一个简化真实现象的简化现象,因此使预测具有不确定性。因此,量化不确定性的能力对于任何建模框架都至关重要,使用户能够评估某些利益数量参数的重要性,并通过提供对不确定性的严格理解来控制模型输出的质量。游动模型是一个特殊的数学模型类别,对于一大批物质故障问题来说,这些模型被证明非常准确和稳健。然而,对潮流模型的高计算成本仍然是一个重大限制,阻碍了外部流动应用,需要大量模拟,例如不确定性量化。这一贡献提供了一个使这种计算可行的框架。通过采用多层次的蒙特卡洛(MLOMC)框架(MML),大多数模拟是在使用粗微的网格进行,并且使用微的中间线进行相对较少的模拟,计算方法可以实现大幅降低成本,结构性故障的统计可以估计。结果显示,在改进标准的蒙特雷(Monteal)实际动力模型中,16x次高于标准的基数级的精确度测算,因此,能够通过一个前期的计算方法,使模拟产生一种显示一个快速的模型。</s>