Most image-to-image translation methods focus on learning mappings across domains with the assumption that images share content (e.g., pose) but have their own domain-specific information known as style. When conditioned on a target image, such methods aim to extract the style of the target and combine it with the content of the source image. In this work, we consider the scenario where the target image has a very low resolution. More specifically, our approach aims at transferring fine details from a high resolution (HR) source image to fit a coarse, low resolution (LR) image representation of the target. We therefore generate HR images that share features from both HR and LR inputs. This differs from previous methods that focus on translating a given image style into a target content, our translation approach being able to simultaneously imitate the style and merge the structural information of the LR target. Our approach relies on training the generative model to produce HR target images that both 1) share distinctive information of the associated source image; 2) correctly match the LR target image when downscaled. We validate our method on the CelebA-HQ and AFHQ datasets by demonstrating improvements in terms of visual quality, diversity and coverage. Qualitative and quantitative results show that when dealing with intra-domain image translation, our method generates more realistic samples compared to state-of-the-art methods such as Stargan-v2
翻译:多数图像到图像翻译方法侧重于跨域学习绘图, 假设图像共享内容( 例如, 显示), 但有其自身的域域特定信息称为风格。 当以目标图像为条件时, 这些方法旨在提取目标样式, 并将其与源图像的内容结合起来。 在这项工作中, 我们考虑目标图像分辨率非常低的情景。 更具体地说, 我们的方法旨在从高分辨率( HR) 源图像中传输精细细节, 以适合目标的粗略、 低分辨率( LR) 图像表示。 因此, 我们生成的HR图像与人力资源和 LR 投入具有相同特性。 这与以往侧重于将给定图像样式转换为目标内容的方法不同, 我们的翻译方法能够同时模仿目标的样式, 并将目标图像内容与源图像内容合并。 我们的方法依赖于对基因化模型的培训, 以1 共享相关源图像的独特信息; 2 缩放时, 我们验证了我们用于 CelibA- HQ 和 AFHQ 数据集的方法, 既共享功能, 也与以前注重将给目标内容的图像的图像质量和图像转换方法相比较, 显示质量的图像质量分析结果, 将显示为质量质量分析结果, 以显示为质化方法, 我们的方法将展示为质量和图像的定量分析方法, 以显示为质量质量和 度分析方法, 度为质量- 质量- 质量- 质量- 模拟的图像的图像的图像的升级为质量- 。