Unsupervised image-to-image translation aims at learning the mapping from the source to target domain without using paired images for training. An essential yet restrictive assumption for unsupervised image translation is that the two domains are aligned, e.g., for the selfie2anime task, the anime (selfie) domain must contain only anime (selfie) face images that can be translated to some images in the other domain. Collecting aligned domains can be laborious and needs lots of attention. In this paper, we consider the task of image translation between two unaligned domains, which may arise for various possible reasons. To solve this problem, we propose to select images based on importance reweighting and develop a method to learn the weights and perform translation simultaneously and automatically. We compare the proposed method with state-of-the-art image translation approaches and present qualitative and quantitative results on different tasks with unaligned domains. Extensive empirical evidence demonstrates the usefulness of the proposed problem formulation and the superiority of our method.
翻译:未经监督的图像到图像翻译旨在从源头到目标域的映射学习,而不必使用配对图像进行培训。对于未经监督的图像翻译来说,一个重要但限制性的假设是,这两个域是相互对齐的,例如,为进行自负2anime任务, 动画(selifie) 域必须只包含能翻译到另一个域中某些图像的动画( selifie) 脸部图像。 收集一致域可能是很费力的, 需要多加注意。 在本文中, 我们考虑两个不对齐域之间的图像翻译任务, 这可能出于各种可能的原因产生。 为了解决这个问题, 我们提议根据重要性的重新加权选择图像, 并开发一种方法来学习重量, 同时和自动进行翻译。 我们比较了拟议的方法与最新图像翻译方法, 并用不结盟域对不同任务提出定性和定量结果。 广泛的实证证据表明, 拟议的问题配制是有用的, 我们的方法具有优势。