We study power approximation formulas for peak detection using Gaussian random field theory. The approximation, based on the expected number of local maxima above the threshold $u$, $\mathbb{E}[M_u]$, is proved to work well under three asymptotic scenarios: small domain, large threshold, and sharp signal. An adjusted version of $\mathbb{E}[M_u]$ is also proposed to improve accuracy when the expected number of local maxima $\mathbb{E}[M_{-\infty}]$ exceeds 1. Cheng and Schwartzman (2018) developed explicit formulas for $\mathbb{E}[M_u]$ of smooth isotropic Gaussian random fields with zero mean. In this paper, these formulas are extended to allow for rotational symmetric mean functions, so that they are suitable for power calculations. We also apply our formulas to 2D and 3D simulated datasets, and the 3D data is induced by a group analysis of fMRI data from the Human Connectome Project to measure performance in a realistic setting.
翻译:我们用高斯随机字段理论研究峰值检测的电近近似公式。 以高于阈值$$( $\ mathbb{ E} $\ m_ u) 的本地最大值( $\ mathb{ E) 的预期值为基础, 近似值在三种无线假设情景下证明效果良好: 小域、 大阈值和尖锐信号。 修改后的 $\ m_ e} [ M_ u] 也是为了在本地最大值$\ mathbb{ E} [ M ⁇ -\\\ infty} 超过 1. Cheng 和 Schwartzman ( 2018) 的预期值数时提高准确性。 3D 数据是由对 人类连接工程的 FMRI 数据进行分组分析, 以现实化的方式测量性能 。