We introduce a novel method to derandomize the learning with errors (LWE) problem by generating deterministic yet sufficiently independent LWE instances that are constructed by using linear regression models, which are generated via (wireless) communication errors. We also introduce star-specific key-homomorphic (SSKH) pseudorandom functions (PRFs), which are defined by the respective sets of parties that construct them. We use our derandomized variant of LWE to construct a SSKH PRF family. The sets of parties constructing SSKH PRFs are arranged as star graphs with possibly shared vertices, i.e., the pairs of sets may have non-empty intersections. We reduce the security of our SSKH PRF family to the hardness of LWE. To establish the maximum number of SSKH PRFs that can be constructed -- by a set of parties -- in the presence of passive/active and external/internal adversaries, we prove several bounds on the size of maximally cover-free at most $t$-intersecting $k$-uniform family of sets $\mathcal{H}$, where the three properties are defined as: (i) $k$-uniform: $\forall A \in \mathcal{H}: |A| = k$, (ii) at most $t$-intersecting: $\forall A, B \in \mathcal{H}, B \neq A: |A \cap B| \leq t$, (iii) maximally cover-free: $\forall A \in \mathcal{H}: A \not\subseteq \bigcup\limits_{\substack{B \in \mathcal{H} \\ B \neq A}} B$. For the same purpose, we define and compute the mutual information between different linear regression hypotheses that are generated from overlapping training datasets.


翻译:我们引入了一种新颖的方法, 将学习与错误( LWE) 问题脱钩 { { 新的方法 { 建立确定性但足够独立的 LWE 实例, 由线性回归模型构建, 这些模型是通过( 无线) 通信错误生成的。 我们还引入了由构建这些模型的各方各自组合定义的恒星特定关键和变异( SSKH) 假体功能 。 我们使用我们解密的LWE变量来构建一个 SSKH PRF$ 的家族。 构建 SSKH PRF 的政党组合, 以恒星图形式排列, 可能是共享的 dialice, 也就是说, 也就是说, 双组可能具有非空的交叉点 。 我们将我们的 SSKH PRF 家族的安全度降低到 LWE 的硬度 。 我们用一组缔约方来设定可以构建的 SSKH PRFs的最大数量 -- 存在被动/ 和外部/ 内部对等, 我们证明在最大封闭度范围内的 A- $( 美元) A- b- h) a- b- ladeal- k- b- b- k) 定义的特性: bs k- b- b- b- b- k- k- k- b- b- b- b- b- b- k- k- b- k- k- k- k- k- k- k- k- k- k- k- k- k- b- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- </s>

0
下载
关闭预览

相关内容

线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。其表达形式为y = w'x+e,e为误差服从均值为0的正态分布。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月22日
Arxiv
18+阅读 · 2021年3月16日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员