We introduce a novel method to derandomize the learning with errors (LWE) problem by generating deterministic yet sufficiently independent LWE instances that are constructed by using linear regression models, which are generated via (wireless) communication errors. We also introduce star-specific key-homomorphic (SSKH) pseudorandom functions (PRFs), which are defined by the respective sets of parties that construct them. We use our derandomized variant of LWE to construct a SSKH PRF family. The sets of parties constructing SSKH PRFs are arranged as star graphs with possibly shared vertices, i.e., the pairs of sets may have non-empty intersections. We reduce the security of our SSKH PRF family to the hardness of LWE. To establish the maximum number of SSKH PRFs that can be constructed -- by a set of parties -- in the presence of passive/active and external/internal adversaries, we prove several bounds on the size of maximally cover-free at most $t$-intersecting $k$-uniform family of sets $\mathcal{H}$, where the three properties are defined as: (i) $k$-uniform: $\forall A \in \mathcal{H}: |A| = k$, (ii) at most $t$-intersecting: $\forall A, B \in \mathcal{H}, B \neq A: |A \cap B| \leq t$, (iii) maximally cover-free: $\forall A \in \mathcal{H}: A \not\subseteq \bigcup\limits_{\substack{B \in \mathcal{H} \\ B \neq A}} B$. For the same purpose, we define and compute the mutual information between different linear regression hypotheses that are generated from overlapping training datasets.
翻译:我们引入了一种新颖的方法, 将学习与错误( LWE) 问题脱钩 { { 新的方法 { 建立确定性但足够独立的 LWE 实例, 由线性回归模型构建, 这些模型是通过( 无线) 通信错误生成的。 我们还引入了由构建这些模型的各方各自组合定义的恒星特定关键和变异( SSKH) 假体功能 。 我们使用我们解密的LWE变量来构建一个 SSKH PRF$ 的家族。 构建 SSKH PRF 的政党组合, 以恒星图形式排列, 可能是共享的 dialice, 也就是说, 也就是说, 双组可能具有非空的交叉点 。 我们将我们的 SSKH PRF 家族的安全度降低到 LWE 的硬度 。 我们用一组缔约方来设定可以构建的 SSKH PRFs的最大数量 -- 存在被动/ 和外部/ 内部对等, 我们证明在最大封闭度范围内的 A- $( 美元) A- b- h) a- b- ladeal- k- b- b- k) 定义的特性: bs k- b- b- b- b- k- k- k- b- b- b- b- b- b- k- k- b- k- k- k- k- k- k- k- k- k- k- k- k- k- b- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- k- </s>