This paper introduces the task of {\em Planar Robot Casting (PRC)}: where one planar motion of a robot arm holding one end of a cable causes the other end to slide across the plane toward a desired target. PRC allows the cable to reach points beyond the robot workspace and has applications for cable management in homes, warehouses, and factories. To efficiently learn a PRC policy for a given cable, we propose Real2Sim2Real, a self-supervised framework that automatically collects physical trajectory examples to tune parameters of a dynamics simulator using Differential Evolution, generates many simulated examples, and then learns a policy using a weighted combination of simulated and physical data. We evaluate Real2Sim2Real with three simulators, Isaac Gym-segmented, Isaac Gym-hybrid, and PyBullet, two function approximators, Gaussian Processes and Neural Networks (NNs), and three cables with differing stiffness, torsion, and friction. Results with 240 physical trials suggest that the PRC policies can attain median error distance (as % of cable length) ranging from 8% to 14%, outperforming baselines and policies trained on only real or only simulated examples. Code, data, and videos are available at https://tinyurl.com/robotcast.
翻译:本文介绍 PRC 的任务 : 持有电缆一端的机器人臂的平板运动使另一端滑向另一端的平面滑向理想目标。 PRC 允许电缆到达机器人工作空间以外的地点,并在家庭、 仓库和工厂应用电缆管理 。 为了高效学习给定电缆的 PRC 政策, 我们提议 Real2Sim2Real, 一个自我监督的框架, 自动收集物理轨迹范例, 以使用不同进化来调动动态模拟器的参数, 生成许多模拟例子, 然后用模拟和物理数据的加权组合来学习政策 。 我们用三个模拟器、 Isaaac Gym- sybrid 和 PyBullet 来评估 Real2Seral。 我们用三个模拟和物理数据的加权组合来评估Real2Sim2Real。 我们用三个模拟器、 Isacal Gymission、 Isacal Gym-hybribried 和PyBullet, 两个功能控制器、 高音进程和神经网络网络网络(NNS ) 3个具有不同坚硬性、 和摩擦的电缆、 和摩体实验性试制的断的测试的测试数据级的模型的模型, 范围只有8 14 和模拟的模型的模型的模型的模型的模型的模型的模型的模型的模型。 。