Human affect and mental state estimation in an automated manner, face a number of difficulties, including learning from labels with poor or no temporal resolution, learning from few datasets with little data (often due to confidentiality constraints) and, (very) long, in-the-wild videos. For these reasons, deep learning methodologies tend to overfit, that is, arrive at latent representations with poor generalisation performance on the final regression task. To overcome this, in this work, we introduce two complementary contributions. First, we introduce a novel relational loss for multilabel regression and ordinal problems that regularises learning and leads to better generalisation. The proposed loss uses label vector inter-relational information to learn better latent representations by aligning batch label distances to the distances in the latent feature space. Second, we utilise a two-stage attention architecture that estimates a target for each clip by using features from the neighbouring clips as temporal context. We evaluate the proposed methodology on both continuous affect and schizophrenia severity estimation problems, as there are methodological and contextual parallels between the two. Experimental results demonstrate that the proposed methodology outperforms all baselines. In the domain of schizophrenia, the proposed methodology outperforms previous state-of-the-art by a large margin, achieving a PCC of up to 78% performance close to that of human experts (85%) and much higher than previous works (uplift of up to 40%). In the case of affect recognition, we outperform previous vision-based methods in terms of CCC on both the OMG and the AMIGOS datasets. Specifically for AMIGOS, we outperform previous SoTA CCC for both arousal and valence by 9% and 13% respectively, and in the OMG dataset we outperform previous vision works by up to 5% for both arousal and valence.


翻译:由于这些原因,深层次的学习方法往往过于适合,也就是说,在最终回归任务中,我们引入了两种互补作用。首先,我们引入了多标签回归和或无时间分辨率的奥氏度问题的新关系损失,这些标签使得学习更加正常,并导致更好的概括化。拟议的损失使用少量数据(通常由于保密限制)从少数数据集学习,以及(非常)长期的动态视频。由于这些原因,深层次的学习方法往往在最终回归任务中过于适合,也就是说,由于在最终回归任务中,在潜在概括性表现表现不佳,从而形成潜在的表现。为了克服这一点,我们在这项工作中,我们引入了两种互补的贡献。首先,我们引入了多标签回归和或无时间分辨率问题的新出现关系损失,从而使得学习更加普遍化。拟议的矢量间关系信息通过将批量标签距离与潜在特征空间的距离相匹配来学习更好的潜在表现。第二,我们采用了一个两阶段关注结构,即利用邻近的剪辑的特征来估算每段的目标。我们用连续影响和精神分裂强度估计问题的拟议方法,因为这两种方法在方法和背景上两个阶段之间都有。实验结果显示着所有基线。在我们提出的方法上比基线上,在前一个基线上,在以前的亚氏-直位数据中,在前的轨道上,在前的轨道上,从以前的缩缩缩算法中,在前的轨道上,从以前的直向上,在前的轨道上,在前的轨道上,在上,在前一个直向上,在前的轨道上,在前的轨道上,在前的轨道上,在前的轨道上,在前的轨道上,在前的轨道上,在上,在前的轨道上,在前的轨道上,在前的轨道上,在上,在前的轨道上,在前的轨道上,在上,在上,在上,在上,在上,在上,在上,在上,在上,在上,在上,在上,直向上,在上,在上,在上,在上,在上,在上,在上,在上,在上,在上,在上,在上,在上,在上,在上,在上,在上,在上,在上,在上,在上,在上,在

0
下载
关闭预览

相关内容

专知会员服务
59+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月6日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关VIP内容
专知会员服务
59+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员