Terrain-aware locomotion has become an emerging topic in legged robotics. However, it is hard to generate challenging and realistic terrains in simulation, which limits the way researchers evaluate their locomotion policies. In this paper, we prototype the generation of a terrain dataset via terrain authoring and active learning, and the learned samplers can stably generate diverse high-quality terrains. Hopefully, the generated dataset can make a terrain-robustness benchmark for legged locomotion. The dataset and the code implementation are released at https://bit.ly/3bn4j7f.
翻译:Terrain-aware locomotion已成为脚踏式机器人中的一个新兴主题,然而,在模拟中很难产生具有挑战性和现实的地形,这限制了研究人员评估其移动政策的方式。 在本文中,我们通过地形写作和积极学习,对地形数据集的生成进行原型设计,而学习的取样员可以刺杀产生各种高质量的地形。希望生成的数据集能够为脚踏式移动制作地形-湿度基准。数据集和代码实施将在 https://bit.ly/3bn4j7f 上发布。