The phenomenon of benign overfitting, where a predictor perfectly fits noisy training data while attaining near-optimal expected loss, has received much attention in recent years, but still remains not fully understood beyond well-specified linear regression setups. In this paper, we provide several new results on when one can or cannot expect benign overfitting to occur, for both regression and classification tasks. We consider a prototypical and rather generic data model for benign overfitting of linear predictors, where an arbitrary input distribution of some fixed dimension $k$ is concatenated with a high-dimensional distribution. For linear regression which is not necessarily well-specified, we show that the minimum-norm interpolating predictor (that standard training methods converge to) is biased towards an inconsistent solution in general, hence benign overfitting will generally not occur. Moreover, we show how this can be extended beyond standard linear regression, by an argument proving how the existence of benign overfitting on some regression problems precludes its existence on other regression problems. We then turn to classification problems, and show that the situation there is much more favorable. Specifically, we prove that the max-margin predictor (to which standard training methods are known to converge in direction) is asymptotically biased towards minimizing a weighted \emph{squared hinge loss}. This allows us to reduce the question of benign overfitting in classification to the simpler question of whether this loss is a good surrogate for the misclassification error, and use it to show benign overfitting in some new settings.


翻译:过拟合的良性现象已经在近年来得到了广泛关注,但除了线性回归问题的明确设置之外,它仍然没有被充分理解。在本文中,我们针对回归和分类任务提供了一些新的结果,阐明了何时可以或不可以期望出现良性过拟合。我们考虑了一个原型和相当通用的数据模型,来解释线性预测器的良性过拟合,其中任意固定维度$k$的输入分布与高维分布相连。对于不一定明确的线性回归,我们证明了最小范数插值预测器(标准训练方法收敛到该预测器)通常对不一致的解有偏差,因此良性过拟合通常不会出现。此外,我们还证明了如何将其推广到标准线性回归之外,通过推断证明了一些回归问题存在良性过拟合,则其他回归问题不存在良性过拟合。然后我们转向分类问题,显示那里的情况要好得多。具体来说,我们证明了最大边际预测器(标准训练方法已知收敛于该预测器)在渐近时有偏向于最小化加权的平方铰链损失。这使我们能够将分类中的良性过拟合问题简化为这个损失是否是误分类误差的良好代理,以及利用它来证明某些新设置中的良性过拟合。

0
下载
关闭预览

相关内容

【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
28+阅读 · 2022年12月26日
【NeurIPS2022】GENIE:高阶去噪扩散求解器
专知会员服务
18+阅读 · 2022年11月13日
最新《Transformers模型》教程,64页ppt
专知会员服务
311+阅读 · 2020年11月26日
近期必读的六篇 ICML 2020【因果推理】相关论文
专知会员服务
88+阅读 · 2020年9月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月30日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员