Application migration and dynamic voltage and frequency scaling (DVFS) are indispensable means for fully exploiting the available potential in thermal optimization of a heterogeneous clustered multi-core processor under user-defined quality of service (QoS) targets. However, selecting the core to execute each application and the voltage/frequency (V/f) levels of each cluster is a complex problem because 1) the diverse characteristics and QoS targets of applications require different optimizations, and 2) per-cluster DVFS requires a global optimization considering all running applications. State-of-the-art resource management techniques for power or temperature minimization either rely on measurements that are often not available (such as power) or fail to consider all the dimensions of the problem (e.g., by using simplified analytical models). Imitation learning (IL) enables to use the optimality of an oracle policy, yet at low run-time overhead, by training a model from oracle demonstrations. We are the first to employ IL for temperature minimization under QoS targets. We tackle the complexity by training a neural network (NN) and accelerate the NN inference using a neural processing unit (NPU). While such NN accelerators are becoming increasingly widespread on end devices, they are so far only used to accelerate user applications. In contrast, we use an existing accelerator on a real platform to accelerate NN-based resource management. Our evaluation on a HiKey 970 board with an Arm big.LITTLE CPU and an NPU shows significant temperature reductions at a negligible run-time overhead, with unseen applications and different cooling than used for training.
翻译:应用迁移和动态电压和频率缩放(DVFS)是充分利用在用户定义的服务质量(Qos)目标下对混合组合多核心处理器进行热优化的现有潜力的不可或缺的手段。然而,选择执行每个应用的核心以及每个组的电压/频率(V/f)水平是一个复杂的问题,因为1)应用的不同特点和QOS目标需要不同的优化,2)每个组的NVFS需要考虑到所有运行中的应用程序进行全球优化。 最先进的电或温度最小化资源管理技术要么依靠通常不具备的测量(例如电力),要么无法考虑问题的所有方面(例如,使用简化的分析模型)。 光学(ILI)能够使用一个电动政策的最佳性,但运行时间低,培训一个来自电动演示的模型。 在QOS目标下,我们首先使用 ILU 来进行温度最小化。我们通过培训一个神经网络(NEC) 和加速 NNNU应用系统, 正在使用一个快速的系统, 正在使用一个不断加速的系统, 正在使用一个快速的系统处理系统, 正在使用一个快速的系统 。