The evolution of dynamical systems is generically governed by nonlinear partial differential equations (PDEs), whose solution, in a simulation framework, requires vast amounts of computational resources. In this work, we present a novel method that combines a hyper-network solver with a Fourier Neural Operator architecture. Our method treats time and space separately. As a result, it successfully propagates initial conditions in continuous time steps by employing the general composition properties of the partial differential operators. Following previous work, supervision is provided at a specific time point. We test our method on various time evolution PDEs, including nonlinear fluid flows in one, two, and three spatial dimensions. The results show that the new method improves the learning accuracy at the time point of supervision point, and is able to interpolate and the solutions to any intermediate time.
翻译:动态系统的演进一般由非线性部分方程式(PDEs)来规范,该方程式在模拟框架中的解决方案需要大量的计算资源。在这项工作中,我们提出了一个新颖的方法,将超网络求解器与Fourier神经操作器结构结合起来。我们的方法将时间和空间分开处理。因此,它通过使用部分差异操作器的一般构成属性,成功地连续时间步骤传播初始条件。在以往的工作之后,在特定时间点提供监管。我们测试了我们在不同时间进化PDEs的方法,包括非线性流流在一个、两个和三个空间层面。结果显示,新方法提高了在时间点的学习准确性,并且能够对任何中间时间进行内插和解决方案。