It is well known that the spatial distribution of the carbon-binder domain (CBD) offers a large potential to further optimize lithium-ion batteries. However, it is challenging to reconstruct the CBD from tomographic image data obtained by synchrotron tomography. In the present paper, we consider several approaches to segment 3D image data of two different cathodes into three phases, namely active material, CBD and pores. More precisely, we focus on global thresholding, a local closing approach based on EDX data, a k-means clustering method, and a procedure based on a neural network that has been trained by correlative microscopy, i.e., based on data gained by synchrotron tomography and FIB-SEM data representing the same electrode. We quantify the impact of the considered segmentation approaches on morphological characteristics as well as on the resulting performance by spatially-resolved transport simulations. Furthermore, we use experimentally determined electrochemical properties to identify an appropriate range for the effective transport parameter of the CBD. The developed methodology is applied to two differently manufactured cathodes, namely an ultra-thick unstructured cathode and a two-layer cathode with varying CBD content in both layers. This comparison elucidates the impact of a specific structuring concept on the 3D microstructure of cathodes.


翻译:众所周知,碳燃烧区的空间分布提供了进一步优化锂离子电池的巨大潜力,然而,根据同步成像仪和代表同一电极的FIB-SEM数据获得的数据重建《生物多样性公约》具有挑战性。在本文件中,我们考虑了将两个不同阴极的3D成像数据分成三个阶段的若干方法,即活材料、《生物多样性公约》和孔径。更准确地说,我们侧重于全球阈值、基于EDX数据的地方封闭方法、K-poys群集方法以及基于神经网络的程序,该网络经过相关显微镜学的培训,即根据同步成像仪和代表同一电极的FIB-SEM数据获得的数据来重建《生物多样性公约》。我们量化了考虑的分解方法对形态特征以及空间溶解的运输模拟所产生的性能的影响。此外,我们利用实验性确定的电化学特性来确定《生物多样性公约》有效运输参数的适当范围。所开发的方法适用于两种不同的制造成的细胞网络,即对不同层结构的超深层和深层的深层进行这一分析。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
机器学习组合优化
专知会员服务
108+阅读 · 2021年2月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
64+阅读 · 2021年6月18日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员