Obtaining scalable algorithms for hierarchical agglomerative clustering (HAC) is of significant interest due to the massive size of real-world datasets. At the same time, efficiently parallelizing HAC is difficult due to the seemingly sequential nature of the algorithm. In this paper, we address this issue and present ParHAC, the first efficient parallel HAC algorithm with sublinear depth for the widely-used average-linkage function. In particular, we provide a $(1+\epsilon)$-approximation algorithm for this problem on $m$ edge graphs using $\tilde{O}(m)$ work and poly-logarithmic depth. Moreover, we show that obtaining similar bounds for exact average-linkage HAC is not possible under standard complexity-theoretic assumptions. We complement our theoretical results with a comprehensive study of the ParHAC algorithm in terms of its scalability, performance, and quality, and compare with several state-of-the-art sequential and parallel baselines. On a broad set of large publicly-available real-world datasets, we find that ParHAC obtains a 50.1x speedup on average over the best sequential baseline, while achieving quality similar to the exact HAC algorithm. We also show that ParHAC can cluster one of the largest publicly available graph datasets with 124 billion edges in a little over three hours using a commodity multicore machine.


翻译:由于真实世界数据集的庞大规模,为等级聚合群(HAC)获取可缩放的算法非常有意义。 同时,由于算法的貌似顺序性质,有效平行的HAC很难实现。在本文中,我们讨论这一问题,并提出PARHAC,这是第一个高效的平行的HAC算法,具有广泛使用的平均链接功能的亚线深度。特别是,我们为这一问题在使用美元($\tilde{O}(m)的工作和多对数深度的美元边端图上提供了1美元(1 ⁇ epsillon)$-o(m)-o(m)-o)-o(m)-o(m)-o(m)-。此外,我们表明,在标准的复杂理论假设下,不可能获得类似平均链接的HAC(HAC)的类似界限。我们对PARHAC(PAR)的算法进行了全面研究,从可缩放、性和质量的角度对PARHAC的算法进行了全面研究,并与若干个最先进的直线级和平行的基线进行比较。在使用大型公共可获取的美元实际世界数据库数据图集上,我们发现,在最接近的MAC(PARHAAC)的3级的基数级数据上也能够显示一个最接近于最接近的MAC的基数。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
20+阅读 · 2021年9月22日
Arxiv
31+阅读 · 2020年9月21日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员