As far as Scene Graph Generation (SGG), coarse and fine predicates mix in the dataset due to the crowd-sourced labeling, and the long-tail problem is also pronounced. Given this tricky situation, many existing SGG methods treat the predicates equally and learn the model under the supervision of mixed-granularity predicates in one stage, leading to relatively coarse predictions. In order to alleviate the negative impact of the suboptimum mixed-granularity annotation and long-tail effect problems, this paper proposes a novel Hierarchical Memory Learning (HML) framework to learn the model from simple to complex, which is similar to the human beings' hierarchical memory learning process. After the autonomous partition of coarse and fine predicates, the model is first trained on the coarse predicates and then learns the fine predicates. In order to realize this hierarchical learning pattern, this paper, for the first time, formulates the HML framework using the new Concept Reconstruction (CR) and Model Reconstruction (MR) constraints. It is worth noticing that the HML framework can be taken as one general optimization strategy to improve various SGG models, and significant improvement can be achieved on the SGG benchmark (i.e., Visual Genome).
翻译:就图示生成(SGG)而言,由于众源标签和长尾问题,数据集中的粗糙和细细的顶部混合体混合体混合体组(SGG),由于众源标签和长尾问题,本文提出了一个新的等级记忆学习(HML)框架,以从简单到复杂学习模型,这与人类的等级记忆学习过程相似。鉴于这种棘手的情况,许多现有的SGG方法平等地对待顶部,并在混合群落层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层层