Answering first-order logical (FOL) queries over knowledge graphs (KG) remains a challenging task mainly due to KG incompleteness. Query embedding approaches this problem by computing the low-dimensional vector representations of entities, relations, and logical queries. KGs exhibit relational patterns such as symmetry and composition and modeling the patterns can further enhance the performance of query embedding models. However, the role of such patterns in answering FOL queries by query embedding models has not been yet studied in the literature. In this paper, we fill in this research gap and empower FOL queries reasoning with pattern inference by introducing an inductive bias that allows for learning relation patterns. To this end, we develop a novel query embedding method, RoConE, that defines query regions as geometric cones and algebraic query operators by rotations in complex space. RoConE combines the advantages of Cone as a well-specified geometric representation for query embedding, and also the rotation operator as a powerful algebraic operation for pattern inference. Our experimental results on several benchmark datasets confirm the advantage of relational patterns for enhancing logical query answering task.


翻译:回答知识图谱上的一阶逻辑查询一直是一项具有挑战性的任务,主要原因在于知识图谱的不完备性。查询嵌入方法通过计算实体、关系和逻辑查询的低维向量表示来解决这个问题。知识图谱展现出对称性和组合等关系模式,建模这些模式可以进一步提高查询嵌入模型的性能。然而,关于这些模式如何在查询嵌入模型中对回答一阶逻辑查询任务发挥作用的问题尚未在文献中研究。在本文中,我们填补了这一研究空白,引入了一种归纳偏置,允许学习关系模式,从而增强一阶逻辑查询推理。为此,我们开发了一种新的查询嵌入方法RoConE,将查询区域定义为几何锥体,将代数查询运算符定义为复数空间中的旋转。RoConE结合了几何表示形式Cone的优点和作为关系模式推理强大代数运算符的旋转运算符。我们在多个基准数据集上的实验结果证实了这种关系模式增强逻辑查询回答任务的优势。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【斯坦福CS520】向量空间中嵌入的知识图谱推理,48页ppt
专知会员服务
100+阅读 · 2020年6月11日
17篇知识图谱Knowledge Graphs论文 @AAAI2020
专知会员服务
171+阅读 · 2020年2月13日
论文浅尝 | Neural-Symbolic Models for Logical Queries on KG
开放知识图谱
0+阅读 · 2022年10月31日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
ACL2020 | 基于Knowledge Embedding的多跳知识图谱问答
AI科技评论
18+阅读 · 2020年6月29日
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
论文浅尝 | Question Answering over Freebase
开放知识图谱
18+阅读 · 2018年1月9日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
14+阅读 · 2019年11月26日
VIP会员
相关VIP内容
【斯坦福CS520】向量空间中嵌入的知识图谱推理,48页ppt
专知会员服务
100+阅读 · 2020年6月11日
17篇知识图谱Knowledge Graphs论文 @AAAI2020
专知会员服务
171+阅读 · 2020年2月13日
相关资讯
论文浅尝 | Neural-Symbolic Models for Logical Queries on KG
开放知识图谱
0+阅读 · 2022年10月31日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
ACL2020 | 基于Knowledge Embedding的多跳知识图谱问答
AI科技评论
18+阅读 · 2020年6月29日
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
论文浅尝 | Question Answering over Freebase
开放知识图谱
18+阅读 · 2018年1月9日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员