Video anomaly detection is a challenging task because most anomalies are scarce and non-deterministic. Many approaches investigate the reconstruction difference between normal and abnormal patterns, but neglect that anomalies do not necessarily correspond to large reconstruction errors. To address this issue, we design a Convolutional LSTM Auto-Encoder prediction framework with enhanced spatio-temporal memory exchange using bi-directionalilty and a higher-order mechanism. The bi-directional structure promotes learning the temporal regularity through forward and backward predictions. The unique higher-order mechanism further strengthens spatial information interaction between the encoder and the decoder. Considering the limited receptive fields in Convolutional LSTMs, we also introduce an attention module to highlight informative features for prediction. Anomalies are eventually identified by comparing the frames with their corresponding predictions. Evaluations on three popular benchmarks show that our framework outperforms most existing prediction-based anomaly detection methods.
翻译:视频异常现象的探测是一项艰巨的任务,因为大多数异常现象都是稀缺的,而且不是决定性的。 许多方法调查正常和异常模式之间的重建差异,但忽视异常现象不一定与大型重建错误相对应。 为了解决这个问题,我们设计了一个革命性 LSTM 自动- Encoder 预测框架,同时使用双向光滑和高阶机制加强时空记忆交换。双向结构有助于通过前向和后向预测了解时间规律性。这个独特的高阶机制进一步加强了编码器和解密器之间的空间信息互动。考虑到Convolutional LSTMS中有限的可接收域,我们还引入了一个关注模块,以突出预测的信息特征。最终通过将框架与相应的预测进行比较来识别异常现象。对三种流行基准的评估表明,我们的框架比大多数现有的预测异常现象探测方法都好。