This paper introduces a probabilistic framework to estimate parameters of an acquisition function given observed human behavior that can be modeled as a collection of sample paths from a Bayesian optimization procedure. The methodology involves defining a likelihood on observed human behavior from an optimization task, where the likelihood is parameterized by a Bayesian optimization subroutine governed by an unknown acquisition function. This structure enables us to make inference on a subject's acquisition function while allowing their behavior to deviate around the solution to the Bayesian optimization subroutine. To test our methods, we designed a sequential optimization task which forced subjects to balance exploration and exploitation in search of an invisible target location. Applying our proposed methods to the resulting data, we find that many subjects tend to exhibit exploration preferences beyond that of standard acquisition functions to capture. Guided by the model discrepancies, we augment the candidate acquisition functions to yield a superior fit to the human behavior in this task.
翻译:本文引入了一种概率框架, 用于估计获得功能的参数, 即观测到的人类行为的参数, 可以作为来自贝叶西亚优化程序的样本路径的集合模型。 方法涉及从优化任务中确定观察到的人类行为的可能性, 优化任务中的可能性由贝叶西亚优化子例程加以参数化, 受未知的获取功能制约。 这个结构让我们能够推断一个对象的获取功能, 同时允许他们的行为偏离巴伊西亚优化子例程的解决方案。 为了测试我们的方法, 我们设计了一个顺序优化任务, 迫使主体平衡探索和开发, 以寻找一个隐性目标位置。 将我们建议的方法应用到生成的数据中, 我们发现许多主体往往展示超出标准获取功能的勘探偏好。 根据模型差异, 我们增加候选对象的获取功能, 以产生符合此任务中人类行为的优势 。