Various forms of regularization in learning tasks strive for different notions of simplicity. This paper presents a spectral regularization technique, which attaches a unique inductive bias to sequence modeling based on an intuitive concept of simplicity defined in the Chomsky hierarchy. From fundamental connections between Hankel matrices and regular grammars, we propose to use the trace norm of the Hankel matrix, the tightest convex relaxation of its rank, as the spectral regularizer. To cope with the fact that the Hankel matrix is bi-infinite, we propose an unbiased stochastic estimator for its trace norm. Ultimately, we demonstrate experimental results on Tomita grammars, which exhibit the potential benefits of spectral regularization and validate the proposed stochastic estimator.
翻译:学习任务中各种正规化形式的正规化形式都追求不同的简单概念。 本文展示了一种光谱正规化技术,它给基于乔姆斯基等级体系中界定的简单直观概念的序列建模提供了独特的诱导偏向。 从汉克尔矩阵和普通语法之间的基本联系来看,我们建议使用汉克尔矩阵的追踪规范,即其级别最紧和最紧的平衡放松,作为光谱正规化器。为了应对汉克尔矩阵是双无限的这一事实,我们建议用一个不偏袒的随机估测器进行其跟踪规范。 最终,我们展示了托米塔语法的实验结果,这展示了光谱正规化的潜在好处,并验证了拟议的随机估算器。