The spectral density matrix is a fundamental object of interest in time series analysis, and it encodes both contemporary and dynamic linear relationships between component processes of the multivariate system. In this paper we develop novel inference procedures for the spectral density matrix in the high-dimensional setting. Specifically, we introduce a new global testing procedure to test the nullity of the cross-spectral density for a given set of frequencies and across pairs of component indices. For the first time, both Gaussian approximation and parametric bootstrap methodologies are employed to conduct inference for a high-dimensional parameter formulated in the frequency domain, and new technical tools are developed to provide asymptotic guarantees of the size accuracy and power for global testing. We further propose a multiple testing procedure for simultaneously testing the nullity of the cross-spectral density at a given set of frequencies. The method is shown to control the false discovery rate. Both numerical simulations and a real data illustration demonstrate the usefulness of the proposed testing methods.


翻译:光谱密度矩阵是时间序列分析中感兴趣的一个基本对象,它将多变量系统各组成部分进程之间的当代和动态线性关系编码起来。在本文件中,我们为高维环境中的光谱密度矩阵制定了新的推论程序。具体地说,我们引入了新的全球测试程序,以测试特定一组频率和成份指数对对等的跨光谱密度的无效性。第一次,使用高斯近似值和参数靴套方法对在频率域中开发的高维参数进行推论,并开发了新的技术工具,为全球测试提供大小精度和功率的无损保证。我们进一步提出了在特定一组频率同时测试跨光谱密度的无效性的多重测试程序。该方法用来控制虚假的发现率。数字模拟和真实的数据说明都显示了拟议测试方法的有用性。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年12月18日
专知会员服务
51+阅读 · 2020年12月14日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年2月27日
Arxiv
0+阅读 · 2023年2月26日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员