Humans are well-adept at navigating public spaces shared with others, where current autonomous mobile robots still struggle: while safely and efficiently reaching their goals, humans communicate their intentions and conform to unwritten social norms on a daily basis; conversely, robots become clumsy in those daily social scenarios, getting stuck in dense crowds, surprising nearby pedestrians, or even causing collisions. While recent research on robot learning has shown promises in data-driven social robot navigation, good-quality training data is still difficult to acquire through either trial and error or expert demonstrations. In this work, we propose to utilize the body of rich, widely available, social human navigation data in many natural human-inhabited public spaces for robots to learn similar, human-like, socially compliant navigation behaviors. To be specific, we design an open-source egocentric data collection sensor suite wearable by walking humans to provide multi-modal robot perception data; we collect a large-scale (~50 km, 10 hours, 150 trials, 7 humans) dataset in a variety of public spaces which contain numerous natural social navigation interactions; we analyze our dataset, demonstrate its usability, and point out future research directions and use cases.


翻译:人类很擅长在与他人共享的公共空间中导航,而目前的自主移动机器人仍然遇到困难:虽然人们可以安全、高效地达到他们的目标,但在日常社交场景中,人们会进行意图传达和遵守非书面的社交规范;与此相反,机器人在这些日常社交场景中变得笨拙,挤在拥挤的人群中,惊讶附近的行人,甚至引起碰撞。虽然最近关于机器人学习的研究已经展示了数据驱动的社交机器人导航的良好前景,但通过试错或专家演示获得高质量的训练数据仍然很困难。在本文中,我们建议利用许多自然人类所在的公共空间中丰富且广泛可用的社交人类导航数据为机器人学习类似于人类的、具有社交合规性的导航行为。具体地说,我们设计了一个开源的自我中心数据采集传感器套件,可由步行的人类佩戴以提供多模态机器人感知数据;我们在各种含有大量自然社交导航交互的公共空间中收集了一个大规模的(约50公里,10小时,150次试验,7名人类)数据集;我们分析了数据集,展示了它的适用性,并指出了未来的研究方向和用例。

0
下载
关闭预览

相关内容

百篇论文纵览大型语言模型最新研究进展
专知会员服务
69+阅读 · 2023年3月31日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Arxiv
31+阅读 · 2022年2月15日
Arxiv
24+阅读 · 2021年6月25日
Arxiv
10+阅读 · 2020年11月26日
VIP会员
相关VIP内容
百篇论文纵览大型语言模型最新研究进展
专知会员服务
69+阅读 · 2023年3月31日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员