The bivariate Gaussian distribution has been the basis of probability and statistics for many years. Nonetheless, this distribution faces some problems, mainly due to the fact that many real-world phenomena generate data that follow asymmetric distributions. Bidimensional log-symmetric models have attractive properties and can be considered as good alternatives to solve this problem. In this paper, we discuss bivariate log-symmetric distributions and their characterizations. We derive several statistical properties and obtain the maximum likelihood estimators of the model parameters. A Monte Carlo simulation study is performed to evaluate the performance of the parameter estimation method. A real data set is finally analyzed to illustrate the proposed approach.
翻译:多年来,两维对数分布一直是概率和统计的基础,然而,这种分布仍面临一些问题,主要是因为许多真实世界的现象产生数据,而数据是非对称分布的结果。二维对称模型具有吸引力,可被视为解决这一问题的好办法。在本文件中,我们讨论双轨对数分布及其特征特征。我们从数种统计属性中得出一些统计属性,并获得模型参数的最大可能性估计值。进行了蒙特卡洛模拟研究,以评价参数估计方法的性能。最终分析了一套真实的数据集,以说明拟议方法。