We study the maximum likelihood estimation (MLE) in the matrix-variate deviated models where the data are generated from the density function $(1-\lambda^{*})h_{0}(x)+\lambda^{*}f(x|\mu^{*}, \Sigma^{*})$ where $h_{0}$ is a known function, $\lambda^{*} \in [0,1]$ and $(\mu^{*}, \Sigma^{*})$ are unknown parameters to estimate. The main challenges in deriving the convergence rate of the MLE mainly come from two issues: (1) The interaction between the function $h_{0}$ and the density function $f$; (2) The deviated proportion $\lambda^{*}$ can go to the extreme points of $[0,1]$ as the sample size goes to infinity. To address these challenges, we develop the distinguishability condition to capture the linear independent relation between the function $h_{0}$ and the density function $f$. We then provide comprehensive convergence rates of the MLE via the vanishing rate of $\lambda^{*}$ to 0 as well as the distinguishability of $h_{0}$ and $f$.
翻译:我们研究了矩阵变差模型中的最大可能性估计值(MLE),其中数据来自密度函数$(1-\lambda ⁇ )h ⁇ 0}(x)<lambda ⁇ ff(x ⁇ mu ⁇,\Sigma ⁇ )$($h ⁇ 0}美元是已知函数,美元=lambda ⁇ 美元=美元=[0,1美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=%=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元===美元======美元==美元=美元=美元==美元==美元=美元=美元=美元=美元=美元=美元=美元===美元=美元==美元=美元=美元=美元==美元===美元=美元=美元=美元=美元=====美元========美元=======美元=美元====美元==========================美元========================================================================================================================================================