This paper studies multivariate nonparametric change point localization and inference problems. The data consists of a multivariate time series with potentially short range dependence. The distribution of this data is assumed to be piecewise constant with densities in a H\"{o}lder class. The change points, or times at which the distribution changes, are unknown. We derive the limiting distributions of the change point estimators when the minimal jump size vanishes or remains constant, a first in the literature on change point settings. We are introducing two new features: a consistent estimator that can detect when a change is happening in data with short-term dependence, and a consistent block-type long-run variance estimator. Numerical evidence is provided to back up our theoretical results.
翻译:本文研究多变量的非参数变化点位置化和推论问题。 数据包含一个多变量时间序列, 可能具有短距离依赖性。 此数据的分布假定为与 H\ “ {o}lder 类中的密度成细数常数。 变化点或分布变化的时间未知。 当最小跳动大小消失或保持不变时, 我们得出变化点估计器的有限分布, 这是关于改变点设置的文献中的第一个。 我们正在引入两个新特征: 一个一致的估算器, 可以在数据发生短期依赖性变化时检测变化时检测, 和一个一致的区块型长期差异估计器。 提供了数字证据来支持我们的理论结果 。