Performance of classifiers is often measured in terms of average accuracy on test data. Despite being a standard measure, average accuracy fails in characterizing the fit of the model to the underlying conditional law of labels given the features vector ($Y|X$), e.g. due to model misspecification, over fitting, and high-dimensionality. In this paper, we consider the fundamental problem of assessing the goodness-of-fit for a general binary classifier. Our framework does not make any parametric assumption on the conditional law $Y|X$, and treats that as a black box oracle model which can be accessed only through queries. We formulate the goodness-of-fit assessment problem as a tolerance hypothesis testing of the form \[ H_0: \mathbb{E}\Big[D_f\Big({\sf Bern}(\eta(X))\|{\sf Bern}(\hat{\eta}(X))\Big)\Big]\leq \tau\,, \] where $D_f$ represents an $f$-divergence function, and $\eta(x)$, $\hat{\eta}(x)$ respectively denote the true and an estimate likelihood for a feature vector $x$ admitting a positive label. We propose a novel test, called \grasp for testing $H_0$, which works in finite sample settings, no matter the features (distribution-free). We also propose model-X \grasp designed for model-X settings where the joint distribution of the features vector is known. Model-X \grasp uses this distributional information to achieve better power. We evaluate the performance of our tests through extensive numerical experiments.


翻译:分类器的性能通常以测试数据的平均准确度来衡量。 尽管这是标准尺度, 但平均准确度无法将模型与特性矢量( Y ⁇ X$) 所显示的标签基本有条件法的匹配性格( y ⁇ X$ ), 例如由于模型区分不当、 安装过重、 高维度等原因。 在本文中, 我们考虑评估通用二进制分类器是否适合的基本问题。 我们的框架没有对条件法作任何参数假设 $Y ⁇ X$\ x$\Big\Big\Big\\Big\leq\\ tau\\, 并且将它作为黑盒或甲模型模型模型模型模型模型模型模型模型, 只能通过查询获得。 我们将“ 良好” 评估特性作为表格[ H_0:\ mathb{E\Big[D_Big_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_ 的容忍性假设性能, 用于新矢量度测试( We_x) 的模型- deal- deal- deal_al_ tral_ tral_ a exal_ a exal_ a exexexexex test ex testal_ a ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex exestal ex ex ex ex ex ex ex ex exal exal exestal exestaleveralal exal exal exal ex exal exal ex ex exeveral a a a a a a ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
AUC-based Selective Classification
Arxiv
0+阅读 · 2022年10月19日
Arxiv
0+阅读 · 2022年10月19日
Arxiv
0+阅读 · 2022年10月19日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关资讯
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员