项目名称: BiOCl层状结构相关的晶面依赖特性及其可见光催化性能增强
项目编号: No.51472100
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 一般工业技术
项目作者: 张礼知
作者单位: 华中师范大学
项目金额: 83万元
中文摘要: 太阳能有效利用是解决化石能源经济发展伴随的环境和能源问题的重要途径。模仿自然界光合作用的半导体光催化技术则是一种重要太阳能利用手段。BiOX(X = Cl,Br,I)是一类层状半导体材料,已成为光催化领域的研究热点。BiOCl独特的层状结构和高度的空间对称性使其晶面依赖特性区别于TiO2等传统光催化材料。本项目以层状BiOCl半导体为对象,通过系统研究处于实际水溶液环境中BiOCl光催化活化O2过程,以及BiOCl层状结构和不同晶面暴露对非金属掺杂和贵金属沉积的内在影响规律,深入揭示BiOCl层状结构相关的晶面依赖特性,实现BiOCl内电场强度和可见光吸收的同时增强,发展BiOCl基高效可见光催化材料。BiOCl层状结构相关的晶面依赖特性揭示将有利于设计和制备其它卤化氧铋高性能可见光催化材料,为光催化技术解决人类面临的环境污染和能源短缺问题奠定坚实的基础,推动光催化技术的发展。
中文关键词: 氯氧化铋;层状结构;晶面调控;掺杂;可见光催化
英文摘要: Solar energy utilization is a significant way to solve the environmental and energy problems accompanying with the fossil fuel economy development, while artificial photosynthesis imitated semiconductor photocatalysis is one of important solar energy utilization strategies. Bismuth oxyhalide BiOX (X = Cl, Br and I), the layered V-VI-VII ternary compound semiconductors, have attracted worldwide attention because of their unique layered-structure mediated fascinating physicochemical properties. The unique layered structure and extremely high symmetry of BiOCl might endow it some facet dependent properties different from those of traditional photocatalysts like TiO2. This prject takes layered BiOCl semiconductor as the reaserch object to investigate the photocatalytic O2 activation over BiOCl in the real aqueous circumstance and the effects of layered structure and different facet exposure on the non-metal doping and noble metal deposition, thus clarify the facet dependent properties related to BiOCl layered structure, then realize the simultaneous enhancement of internal electric field and visible light adsorption for the devolepment of high efficient visible light photocatalysts based on BiOCl. The fact dependent properties related to BiOCl layered structure will be used for the design and synthesis of bismuth oxyhalide photocatalysts to solve the environmental and energy problems and promote the development of photocatalysis technology.
英文关键词: BiOCl;Layered Structure;Facet Engineering;Doping;Visible Light Photocatalysis