We provide a deepened study of autocorrelations in Neural Markov Chain Monte Carlo simulations, a version of the traditional Metropolis algorithm which employs neural networks to provide independent proposals. We illustrate our ideas using the two-dimensional Ising model. We propose several estimates of autocorrelation times, some inspired by analytical results derived for the Metropolized Independent Sampler, which we compare and study as a function of inverse temperature $\beta$. Based on that we propose an alternative loss function and study its impact on the autocorelation times. Furthermore, we investigate the impact of imposing system symmetries ($Z_2$ and/or translational) in the neural network training process on the autocorrelation times. Eventually, we propose a scheme which incorporates partial heat-bath updates. The impact of the above enhancements is discussed for a $16 \times 16$ spin system. The summary of our findings may serve as a guide to the implementation of Neural Markov Chain Monte Carlo simulations of more complicated models.
翻译:我们对Neural Markov 链链蒙特卡洛模拟中的自动关系进行深入研究,这是使用神经网络提供独立建议的传统大都会算法的版本。我们用二维Ising模型来说明我们的想法。我们提出若干对自动关系时间的估计,有些是来自为Metropoly 独立取样器得出的分析结果,我们比较和研究这些结果是反温($\beta$)的函数。基于我们提出替代损失函数并研究其对自动计数时间的影响。此外,我们调查在神经网络培训过程中对自动反热时段实施系统对称($2$和/或翻译)的影响。最后,我们提出一个包含部分热波更新的计划。上述改进的影响将讨论一个16美元的旋转系统。我们的结论摘要可以作为实施更复杂模型的Neural Markov链蒙特卡洛模拟的指南。