In this paper, we develop a kernel learning backward SDE filter method to estimate the state of a stochastic dynamical system based on its partial noisy observations. A system of forward backward stochastic differential equations is used to propagate the state of the target dynamical model, and Bayesian inference is applied to incorporate the observational information. To characterize the dynamical model in the entire state space, we introduce a kernel learning method to learn a continuous global approximation for the conditional probability density function of the target state by using discrete approximated density values as training data. Numerical experiments demonstrate that the kernel learning backward SDE is highly effective and highly efficient.
翻译:在本文中,我们开发了一个内核学习后向SDE过滤器方法,以根据局部噪音观测来估计随机动态系统的状况。一个前向后随机差异方程式系统用于传播目标动态模型的状态,贝叶斯推论用于纳入观测信息。为了描述整个州空间的动态模型特征,我们引入了内核学习方法,通过使用离散的近似密度值作为培训数据,学习目标状态的有条件概率密度函数的连续全球近似值。数字实验表明,内核学习后向SDE非常有效和高效。