Morse and Ingard give a coupled system of time-harmonic equations for the temperature and pressure of an excited gas. These equations form a critical aspect of modeling trace gas sensors. Like other wave propagation problems, the computational problem must be closed with suitable far-field boundary conditions. Working in a scattered-field formulation, we adapt a nonlocal boundary condition proposed earlier for the Helmholtz equation to this coupled system. This boundary condition uses a Green's formula for the true solution on the boundary, giving rise to a nonlocal perturbation of standard transmission boundary conditions. However, the boundary condition is exact and so Galerkin discretization of the resulting problem converges to the restriction of the exact solution to the computational domain. Numerical results demonstrate that accuracy can be obtained on relatively coarse meshes on small computational domains, and the resulting algebraic systems may be solved by GMRES using the local part of the operator as an effective preconditioner.
翻译:摩尔斯 和 Ingard 给出一个同步的时间- 调和方程式系统, 以测量刺激气体的温度和压力。 这些方程式是模拟微量气体传感器的一个关键方面。 与其他波传播问题一样, 计算问题必须用合适的远方边界条件来封闭。 以分散的场外配制, 我们将早先为赫尔姆霍尔茨方程式提议的非本地边界条件调整到这个组合式系统。 这个边界条件使用绿色方程式在边界上的真正解决方案, 导致标准传输边界条件的非本地扰动。 但是, 边界条件很精确, 由此产生的问题的Galerkin离散性会与对计算域的确切解决办法的限制一致。 数字结果显示, 小计算域的相对粗微的网片可以取得准确性, 由此产生的代数系统可以由GMRES使用操作者的地方部分作为有效的先决条件来解决。