Cardiovascular disease is one of the leading causes of death according to WHO. Phonocardiography (PCG) is a costeffective, non-invasive method suitable for heart monitoring. The main aim of this work is to classify heart sounds into normal/abnormal categories. Heart sounds are recorded using different stethoscopes, thus varying in the domain. Based on recent studies, this variability can affect heart sound classification. This work presents a Siamese network architecture for learning the similarity between normal vs. normal or abnormal vs. abnormal signals and the difference between normal vs. abnormal signals. By applying this similarity and difference learning across all domains, the task of domain invariant heart sound classification can be well achieved. We have used the multi-domain 2016 Physionet/CinC challenge dataset for the evaluation method. Results: On the evaluation set provided by the challenge, we have achieved a sensitivity of 82.8%, specificity of 75.3%, and mean accuracy of 79.1%. While overcoming the multi-domain problem, the proposed method has surpassed the first-place method of the Physionet challenge in terms of specificity up to 10.9% and mean accuracy up to 5.6%. Also, compared with similar state-of-the-art domain invariant methods, our model converges faster and performs better in specificity (4.1%) and mean accuracy (1.5%) with an equal number of epochs learned.
翻译:心血管疾病是世卫组织认为死亡的主要原因之一。 心血管疾病( PPCG) 是适合心脏监测的一种成本效益高、非侵入性的方法。 这项工作的主要目的是将心脏声音分类为正常/异常类别。 心脏声音记录使用不同的听诊镜, 因而在范围上各异。 根据最近的研究, 这种变异会影响心脏健康分类。 这项工作为学习正常与正常或异常与异常之间的相似性, 异常信号和正常与异常信号之间的差异提供了一个Siams网络架构。 通过在所有领域应用这种相似性和差异性学习, 差异性心脏声音分类的任务可以很好地实现。 我们使用多多度2016 Physionet/ CinC挑战数据集来评估方法。 结果: 在挑战提供的评估中,我们达到了82.8%的敏感性,75.3%的特性和79.1%的平均值。 在克服多度问题的同时, 拟议的方法已经超越了第一度方法的相似性和差异性学习, 异性声音的精确性( 10- 的准确性, 与我们相同的特性的准确性比例为10) 的正确性, 也超越了第一位方法。