We present medial parametrization, a new approach to parameterizing any compact planar domain bounded by simple closed curves. The basic premise behind our proposed approach is to use two close Voronoi sites, which we call dipoles, to construct and reconstruct an approximate piecewise-linear version of the original boundary and medial axis through Voronoi tessellation. The boundaries and medial axes of such planar compact domains offer a natural way to describe the domain's interior. Any compact planar domain is homeomorphic to a compact unit circular disk admits a natural parameterization isomorphic to the polar parametrization of the disk. Specifically, the medial axis and the boundary generalize the radial and angular parameters, respectively. In this paper, we present a simple algorithm that puts these principles into practice. The algorithm is based on the simultaneous re-creation of the boundaries of the domain and its medial axis using Voronoi tessellation. This simultaneous re-creation provides partitions of the domain into a set of "skinny" convex polygons wherein each polygon is essentially a subset of the medial edges (which we call the spine) connected to the boundary through exactly two straight edges (which we call limbs). This unique structure enables us to convert the original Voronoi tessellation into quadrilaterals and triangles (at the poles of the medial axis) neatly ordered along the domain boundary, thereby allowing proper parametrization of the domain. Our approach is agnostic to the number of holes and disconnected components bounding the domain. We investigate the efficacy of our concept and algorithm through several examples.
翻译:暂无翻译