We introduce an estimator for distances in a compact Riemannian manifold M based on graph Laplacian estimates of the Laplace-Beltrami operator. We upper bound the l2-loss for the ratio of the estimator over the true manifold distance, or more precisely an approximation of manifold distance in non-commutative geometry (cf. [Connes and Suijelekom, 2020]), in terms of spectral errors in the graph Laplacian estimates and, implicitly, several geometric properties of the manifold. We consequently obtain a consistency result for the estimator for samples equidistributed from a strictly positive density on M and graph Laplacians which spectrally converge, in a suitable sense, to the Laplace-Beltrami operator. The estimator resembles, and in fact its convergence properties are derived from, a special case of the Kontorovic dual reformulation of Wasserstein distance known as Connes' Distance Formula.
翻译:我们根据Laplace-Beltrami操作员的图解 Laplacecian估计值,引入一个测距测距的测距仪。 我们根据Laplace-Beltrami操作员的图解 Laplacecian 的图解估计值, 引入一个测距的测距仪。 我们将测距器在真实的方位距离上的比值, 或更精确地将非混合几何学中多距离的近似值( 参见 [ Connes 和 Suijelekom, 2020] 的比值, 以拉placian 图形中光谱差差的差值差值计算, 并隐含该方位数的若干几何特性。 因此, 我们获得一个一致的结果, 用于测距M 和 图形 Laplacecian 的绝对正密度的样本的测位器, 其光谱与 Laplace- Beltrami 操作员相近, 。 估计值与 Kontorovic 相类似, 事实上, 其趋同性来自 Kontorovic 两次重新校拟的瓦塞尔施泰因距离( ) 的图“ 距离公式” 。