More than twenty years after its introduction, Annealed Importance Sampling (AIS) remains one of the most effective methods for marginal likelihood estimation. It relies on a sequence of distributions interpolating between a tractable initial distribution and the target distribution of interest which we simulate from approximately using a non-homogeneous Markov chain. To obtain an importance sampling estimate of the marginal likelihood, AIS introduces an extended target distribution to reweight the Markov chain proposal. While much effort has been devoted to improving the proposal distribution used by AIS, by changing the intermediate distributions and corresponding Markov kernels, an underappreciated issue is that AIS uses a convenient but suboptimal extended target distribution. This can hinder its performance. We here leverage recent progress in score-based generative modeling (SGM) to approximate the optimal extended target distribution for AIS proposals corresponding to the discretization of Langevin and Hamiltonian dynamics. We demonstrate these novel, differentiable, AIS procedures on a number of synthetic benchmark distributions and variational auto-encoders.
翻译:在采用这一方法20多年后,Annaaled Steority Sampling(AIS)仍然是最有效的可能性估计方法之一,它依赖一系列分布序列,在可移动的初步分布和我们模拟的利息目标分布之间相互交叉,从大约使用非同质的Markov链到大约使用非同质的Markov链。为了获得对边际可能性的重要抽样估计,AIS引入了扩大的目标分布,对Markov链提案进行重新加权。虽然已经做出大量努力,通过改变中间分布和相应的Markov内核来改进AIS使用的建议分配,但一个未得到充分认识的问题是,AIS使用一种方便但不理想的扩展目标分布。这可能会妨碍其业绩。我们在此利用基于分数的基因化模型(SGM)最近的进展,以近似于与Langevin和Hamiltonian动态离散化相对的AIS建议的最佳扩展目标分布。我们展示了这些关于若干合成基准分布和变式自动组合的新的、可区别的AIS程序。