In modern machine learning applications, frequent encounters of covariate shift and label scarcity have posed challenges to robust model training and evaluation. Numerous transfer learning methods have been developed to robustly adapt the model itself to some unlabeled target populations using existing labeled data in a source population. However, there is a paucity of literature on transferring performance metrics of a trained model. In this paper, we aim to evaluate the performance of a trained binary classifier on unlabeled target population based on receiver operating characteristic (ROC) analysis. We proposed $\bf S$emi-supervised $\bf T$ransfer l$\bf E$arning of $\bf A$ccuracy $\bf M$easures (STEAM), an efficient three-step estimation procedure that employs 1) double-index modeling to construct calibrated density ratio weights and 2) robust imputation to leverage the large amount of unlabeled data to improve estimation efficiency. We establish the consistency and asymptotic normality of the proposed estimators under correct specification of either the density ratio model or the outcome model. We also correct for potential overfitting bias in the estimators in finite samples with cross-validation. We compare our proposed estimators to existing methods and show reductions in bias and gains in efficiency through simulations. We illustrate the practical utility of the proposed method on evaluating prediction performance of a phenotyping model for Rheumatoid Arthritis (RA) on temporally evolving EHR cohorts.


翻译:在现代机器学习应用中,经常遇到的变换和标签短缺给稳健的模型培训和评价带来了挑战。已经开发了许多转移学习方法,以便利用源数中现有的标签数据,将模型本身强有力地适用于某些未贴标签的目标人群。然而,缺乏关于转让经培训模型的业绩计量的文献。在本文件中,我们的目标是根据接收器操作特征(ROC)分析,评价一个经过培训的未贴标签目标人群的二进制分类器的性能。我们提议在准确的密度比值模型($bf Transf ranser l$\bf E$arning $)下,使模型本身适用于某些未贴标签的目标人群。但是,关于转让经培训的模型(STEAM)的高效三步估算程序,它使用1)双指数模型来构建经校准的密度比重比重比重比重比重的比重。我们提议在准确的密度比值比值模型或对成本比重的比值模型中,我们还纠正了拟议估算比重比重比重比重的方法。我们拟议在模拟比重性模型中,还纠正了现有比重比重比重的比重分析方法,以显示现有比值的比值的比值的比值的比值。我们目前的比值的比值计算,我们用比值的比值的比值的比值的比值。我们用比值的比值计算方法,以显示的比值的比值的比值的比值的比值的比值。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
45+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
专知会员服务
162+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
14+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月30日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
14+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员