In modern machine learning applications, frequent encounters of covariate shift and label scarcity have posed challenges to robust model training and evaluation. Numerous transfer learning methods have been developed to robustly adapt the model itself to some unlabeled target populations using existing labeled data in a source population. However, there is a paucity of literature on transferring performance metrics of a trained model. In this paper, we aim to evaluate the performance of a trained binary classifier on unlabeled target population based on receiver operating characteristic (ROC) analysis. We proposed $\bf S$emi-supervised $\bf T$ransfer l$\bf E$arning of $\bf A$ccuracy $\bf M$easures (STEAM), an efficient three-step estimation procedure that employs 1) double-index modeling to construct calibrated density ratio weights and 2) robust imputation to leverage the large amount of unlabeled data to improve estimation efficiency. We establish the consistency and asymptotic normality of the proposed estimators under correct specification of either the density ratio model or the outcome model. We also correct for potential overfitting bias in the estimators in finite samples with cross-validation. We compare our proposed estimators to existing methods and show reductions in bias and gains in efficiency through simulations. We illustrate the practical utility of the proposed method on evaluating prediction performance of a phenotyping model for Rheumatoid Arthritis (RA) on temporally evolving EHR cohorts.
翻译:在现代机器学习应用中,经常遇到的变换和标签短缺给稳健的模型培训和评价带来了挑战。已经开发了许多转移学习方法,以便利用源数中现有的标签数据,将模型本身强有力地适用于某些未贴标签的目标人群。然而,缺乏关于转让经培训模型的业绩计量的文献。在本文件中,我们的目标是根据接收器操作特征(ROC)分析,评价一个经过培训的未贴标签目标人群的二进制分类器的性能。我们提议在准确的密度比值模型($bf Transf ranser l$\bf E$arning $)下,使模型本身适用于某些未贴标签的目标人群。但是,关于转让经培训的模型(STEAM)的高效三步估算程序,它使用1)双指数模型来构建经校准的密度比重比重比重比重比重的比重。我们提议在准确的密度比值比值模型或对成本比重的比值模型中,我们还纠正了拟议估算比重比重比重比重的方法。我们拟议在模拟比重性模型中,还纠正了现有比重比重比重的比重分析方法,以显示现有比值的比值的比值的比值的比值。我们目前的比值的比值计算,我们用比值的比值的比值的比值的比值。我们用比值的比值计算方法,以显示的比值的比值的比值的比值的比值的比值。