We present AURA-net, a convolutional neural network (CNN) for the segmentation of phase-contrast microscopy images. AURA-net uses transfer learning to accelerate training and Attention mechanisms to help the network focus on relevant image features. In this way, it can be trained efficiently with a very limited amount of annotations. Our network can thus be used to automate the segmentation of datasets that are generally considered too small for deep learning techniques. AURA-net also uses a loss inspired by active contours that is well-adapted to the specificity of phase-contrast images, further improving performance. We show that AURA-net outperforms state-of-the-art alternatives in several small (less than 100images) datasets.
翻译:我们介绍AURA-net,这是一个用于分解相向显微镜图像的进化神经网络。AURA-net利用传输学习加速培训和关注机制,帮助网络关注相关图像特征。通过这种方式,可以以非常有限的附加说明对网络进行有效培训。因此,我们的网络可以用来自动化对于深层学习技术来说通常被认为太小的数据集的分解。AURA-net还利用一种受动态轮廓启发的损失,这种轮廓很适合相向相向图像的特殊性,进一步提高性能。我们显示,AURA-net在几个小的(不到100image)数据集中,优于最先进的替代品。