It is crucial to distinguish mislabeled samples for dealing with noisy labels. Previous methods such as Coteaching and JoCoR introduce two different networks to select clean samples out of the noisy ones and only use these clean ones to train the deep models. Different from these methods which require to train two networks simultaneously, we propose a simple and effective method to identify clean samples only using one single network. We discover that the clean samples prefer to reach consistent predictions for the original images and the transformed images while noisy samples usually suffer from inconsistent predictions. Motivated by this observation, we introduce to constrain the transform consistency between the original images and the transformed images for network training, and then select small-loss samples to update the parameters of the network. Furthermore, in order to mitigate the negative influence of noisy labels, we design a classification loss by using the off-line hard labels and on-line soft labels to provide more reliable supervisions for training a robust model. We conduct comprehensive experiments on CIFAR-10, CIFAR-100 and Clothing1M datasets. Compared with the baselines, we achieve the state-of-the-art performance. Especially, in most cases, our proposed method outperforms the baselines by a large margin.


翻译:区分标签错误的样本对于处理吵闹的标签至关重要。 以前的方法,如Coteaching和JoCorR, 引入了两个不同的网络,从吵闹的标签中挑选干净的样本,而只使用这些干净的样本来培训深层模型。不同的方法是,同时培训两个网络,我们建议了一种简单有效的方法,只用一个网络来识别干净的样本。我们发现,干净的样本更愿意对原始图像和变形图像作出一致的预测,而噪音的样本通常会受到不一致的预测。根据这一观察,我们引入了限制原始图像和改造后的网络培训图像之间转变的一致性,然后选择了小损失样本来更新网络的参数。此外,为了减轻噪音标签的负面影响,我们设计了一种分类损失分类方法,使用离线硬标签和在线软标签来提供更可靠的监督,以培训一个强健的模型。我们在CFAR-10、CIFAR-100和Slade1M数据集上进行了全面实验。与基线相比,我们实现了最先进的模型。特别是以大基线来分析。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
45+阅读 · 2020年10月31日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
32+阅读 · 2020年4月23日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
专知会员服务
110+阅读 · 2020年3月12日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡一分钟】一种实用且高效的多视图匹配方法
泡泡机器人SLAM
6+阅读 · 2018年11月19日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
17+阅读 · 2021年2月15日
Hardness-Aware Deep Metric Learning
Arxiv
6+阅读 · 2019年3月13日
Learning Blind Video Temporal Consistency
Arxiv
3+阅读 · 2018年8月1日
Arxiv
6+阅读 · 2018年3月29日
VIP会员
相关VIP内容
专知会员服务
45+阅读 · 2020年10月31日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
32+阅读 · 2020年4月23日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
专知会员服务
110+阅读 · 2020年3月12日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡一分钟】一种实用且高效的多视图匹配方法
泡泡机器人SLAM
6+阅读 · 2018年11月19日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员