Cost-based image patch matching is at the core of various techniques in computer vision, photogrammetry and remote sensing. When the subpixel disparity between the reference patch in the source and target images is required, either the cost function or the target image have to be interpolated. While cost-based interpolation is the easiest to implement, multiple works have shown that image based interpolation can increase the accuracy of the subpixel matching, but usually at the cost of expensive search procedures. This, however, is problematic, especially for very computation intensive applications such as stereo matching or optical flow computation. In this paper, we show that closed form formulae for subpixel disparity computation for the case of one dimensional matching, e.g., in the case of rectified stereo images where the search space is of one dimension, exists when using the standard NCC, SSD and SAD cost functions. We then demonstrate how to generalize the proposed formulae to the case of high dimensional search spaces, which is required for unrectified stereo matching and optical flow extraction. We also compare our results with traditional cost volume interpolation formulae as well as with state-of-the-art cost-based refinement methods, and show that the proposed formulae bring a small improvement over the state-of-the-art cost-based methods in the case of one dimensional search spaces, and a significant improvement when the search space is two dimensional.


翻译:成本基础图像匹配是计算机视觉、光度测量和遥感等各种技术的核心。 当需要源和目标图像中参考点与目标图像之间的分像差分时, 成本函数或目标图像必须相互调和。 虽然基于成本的内插是最容易执行的, 但多项工程显示基于图像的内插可以提高亚像匹配的准确性, 但通常以昂贵的搜索程序为代价。 然而, 这个问题存在问题, 特别是对于非常密集的计算应用程序, 如立体匹配或光学流计算。 在本文中, 我们展示了用于一个维比匹配的子像素分差的闭式公式。 例如, 在使用标准 NCC、 SSD 和 SAD 成本函数时, 存在基于成本的立体图像, 在使用标准 NCC、 SD 和 SAD 成本功能时, 多个基于图像的内置式图像的校正模式。 我们然后演示如何将拟议公式推广到高维搜索空间的情况, 这对于未校正立的立体匹配和光学流的提取。 我们还将我们的成果与传统的成本规模内部校正公式的两种公式进行比较方法进行比较,, 在基于空间的公式中, 将一个基于成本规模的公式的校正中, 将一个基于成本规模的公式的公式的校正方法显示中, 将一个基于空间的公式的校正, 显示的校正法的公式显示为一种基于状态的校正的公式的公式的校正, 的校正的校正的校正的校正法的校正法的校方制式的校方制式的校方制式的校方法, 显示为以比。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Learning Implicit Fields for Generative Shape Modeling
Arxiv
10+阅读 · 2018年12月6日
Arxiv
13+阅读 · 2018年4月6日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员