Many modern online 3D applications and videogames rely on parametric models of human faces for creating believable avatars. However, manual reproduction of someone's facial likeness with a parametric model is difficult and time-consuming. Machine Learning solution for that task is highly desirable but is also challenging. The paper proposes a novel approach to the so-called Face-to-Parameters problem (F2P for short), aiming to reconstruct a parametric face from a single image. The proposed method utilizes synthetic data, domain decomposition, and domain adaptation for addressing multifaceted challenges in solving the F2P. The open-sourced codebase illustrates our key observations and provides means for quantitative evaluation. The presented approach proves practical in an industrial application; it improves accuracy and allows for more efficient models training. The techniques have the potential to extend to other types of parametric models.


翻译:许多现代在线的3D应用程序和视频游戏依靠人类面孔的参数模型来创建可以令人相信的异形。然而,人工复制某人面部相似性与参数模型的模拟模型既困难又费时。 机器学习对于这项任务非常可取,但也具有挑战性。本文提出了解决所谓的面对面对面仪问题的新颖方法(F2P短),目的是从单一图像中重建一个参数面孔。拟议方法利用合成数据、域分解和域适应来应对解决F2P的多方面挑战。开放源代码库展示了我们的主要观察,提供了定量评估的手段。所提出的方法在工业应用中证明是实用的;它提高了准确性,并允许更有效的模型培训。这些技术有可能扩展到其他类型的参数模型。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
112+阅读 · 2020年2月5日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员