项目名称: 超薄活性层有机太阳能电池研究

项目编号: No.61275038

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 无线电电子学、电信技术

项目作者: 陈晓红

作者单位: 华东师范大学

项目金额: 75万元

中文摘要: 综合运用掩膜技术、纳米压印技术、真空热蒸发和磁控溅射镀膜技术,结合时域有限差分法(FDTD)模拟分析,研制准周期性、非周期性、随机性、准周期性与随机性相结合的金属纳米结构,并用介质材料修饰,使其表面等离子体共振波长范围覆盖整个可见光区,甚至近红外区。探索金属纳米结构和其表面等离子体效应与活性层中激子、载流子相互作用机制。集成于超薄活性层(30-60nm)有机太阳能电池(OPV)的金属纳米结构阵列的定域态表面等离子体共振(LSPR)能适当耦合形成部分短程表面等离激元(SPP)模式,使超薄活性层"光学厚度"接近厚度为80-250nm的活性层"光学厚度",并控制金属内欧姆震荡热损耗。采用界面修饰手段和优化电池结构,克服超薄OPV电池可能存在的界面势垒和载流子复合增加,以及电池并联电阻Rp下降等难题,力争该超薄OPV电池效率比传统厚度OPV电池效率提高15%以上,热稳定性和寿命优于传统OPV电池。

中文关键词: 有机太阳能电池;表面等离子体效应;透明导电薄膜;金属纳米结构;稳定性

英文摘要: Metal nanostructures with quasi-periodic, aperiodic, random, and combination quasi-periodic with random will be developed by integrating mask technique, nanoimprint lithography, vacuum thermal evaporation and magnetron sputtering deposition technology, and combining with the finite difference time domain method (FDTD) simulations. The surface plasmon resonance effect of metal nanostructures can further be adjusted by dielectric materials, and its resonance wavelength can cover the entire visible region, and even near infrared area. Studying interaction mechanisms between metallic nanostructures and their surface plasmon effects, and excitons and carriers in the active layer. Metal nanostructures integrated with ultra-thin active layer (30-60nm) organic photovoltaic (OPV) cells would achieve the localized surface plasmon resonance (LSPR) in part coupled to short-range surface plasmon polaritons (SPP) modes, which will be helpful to increase ultra-thin active layer "optical thickness" closing to the "optical thickness" of traditional active layer of 80-250nm and control Ohmic damping loss in metallic nanostructures.Overcoming the increase of interface barrier and carrier recombination, and the decline of the parallel resistance Rp caused by ultra-thin active layer OPV cells by interface modification methods and ce

英文关键词: organic solar cells;suface plasmon effect;transparent conducting film;metal nanostructures;stability

成为VIP会员查看完整内容
0

相关内容

严新平院士:智能交通发展的现状、挑战与展望
专知会员服务
31+阅读 · 2022年3月17日
全球能源转型及零碳发展白皮书
专知会员服务
40+阅读 · 2022年3月1日
专知会员服务
42+阅读 · 2021年10月8日
专知会员服务
49+阅读 · 2021年10月3日
专知会员服务
99+阅读 · 2021年9月21日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
22+阅读 · 2021年3月9日
基于多头注意力胶囊网络的文本分类模型
专知会员服务
78+阅读 · 2020年5月24日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
最新研究表明:EV电池「越老越安全」
机器之心
0+阅读 · 2021年5月8日
八一八:我就没搞明白什么叫“纯钴”电池
无人机
34+阅读 · 2019年4月12日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Age Optimal Sampling Under Unknown Delay Statistics
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Arxiv
11+阅读 · 2018年10月17日
小贴士
相关VIP内容
严新平院士:智能交通发展的现状、挑战与展望
专知会员服务
31+阅读 · 2022年3月17日
全球能源转型及零碳发展白皮书
专知会员服务
40+阅读 · 2022年3月1日
专知会员服务
42+阅读 · 2021年10月8日
专知会员服务
49+阅读 · 2021年10月3日
专知会员服务
99+阅读 · 2021年9月21日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
22+阅读 · 2021年3月9日
基于多头注意力胶囊网络的文本分类模型
专知会员服务
78+阅读 · 2020年5月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员