Single-view 3D object reconstruction is a fundamental and challenging computer vision task that aims at recovering 3D shapes from single-view RGB images. Most existing deep learning based reconstruction methods are trained and evaluated on the same categories, and they cannot work well when handling objects from novel categories that are not seen during training. Focusing on this issue, this paper tackles Zero-shot Single-view 3D Mesh Reconstruction, to study the model generalization on unseen categories and encourage models to reconstruct objects literally. Specifically, we propose an end-to-end two-stage network, ZeroMesh, to break the category boundaries in reconstruction. Firstly, we factorize the complicated image-to-mesh mapping into two simpler mappings, i.e., image-to-point mapping and point-to-mesh mapping, while the latter is mainly a geometric problem and less dependent on object categories. Secondly, we devise a local feature sampling strategy in 2D and 3D feature spaces to capture the local geometry shared across objects to enhance model generalization. Thirdly, apart from the traditional point-to-point supervision, we introduce a multi-view silhouette loss to supervise the surface generation process, which provides additional regularization and further relieves the overfitting problem. The experimental results show that our method significantly outperforms the existing works on the ShapeNet and Pix3D under different scenarios and various metrics, especially for novel objects.


翻译:单视图 3D 对象重建是一项根本性的、具有挑战性的计算机愿景任务,目的是从单视图 RGB 图像中恢复3D形状。 大部分现有的深层次学习重建方法都是在同一类别上进行培训和评价的, 在处理培训期间看不到的新类别对象时无法很好地使用。 以这一问题为焦点, 本文涉及零拍摄单一视图 3D Mesh 重建, 研究对看不见类别的模型概括, 并鼓励对天体进行真实重建的模型。 具体地说, 我们提出一个端到端的两阶段网络 ZeroMesh, 打破重建中的分类界限。 首先, 我们将复杂的图像到图像的映射方法纳入两个更简单的地图, 即图像到点的映射和点到点到图像的映射图, 而后者主要是一个地理测量问题, 不太依赖于对象的类别。 第二, 我们在 2D 和 3D 特征空间设计一个本地特征取样战略, 以捕捉到不同对象之间共享的本地地理测量方法, 以加强模型的概括化。 第三, 除了传统的点到点目标的界限的边界边界界限外, 我们引入一个多视角的图图图图图图式图图图图, 以监督现有的模型的模型的模型, 演示图层图,, 将新的图解到新的的模型的模型的模型的模型的模型的模型的图面图面图面图面图,, 展示, 展示, 演示图, 的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的图,, 的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的

0
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月3日
VIP会员
相关资讯
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员