Document-level relation extraction aims to extract relations among entities within a document. Compared with its sentence-level counterpart, Document-level relation extraction requires inference over multiple sentences to extract complex relational triples. Previous research normally complete reasoning through information propagation on the mention-level or entity-level document-graphs, regardless of the correlations between the relationships. In this paper, we propose a novel Document-level Relation Extraction model based on a Masked Image Reconstruction network (DRE-MIR), which models inference as a masked image reconstruction problem to capture the correlations between relationships. Specifically, we first leverage an encoder module to get the features of entities and construct the entity-pair matrix based on the features. After that, we look on the entity-pair matrix as an image and then randomly mask it and restore it through an inference module to capture the correlations between the relationships. We evaluate our model on three public document-level relation extraction datasets, i.e. DocRED, CDR, and GDA. Experimental results demonstrate that our model achieves state-of-the-art performance on these three datasets and has excellent robustness against the noises during the inference process.
翻译:文档级的提取关系旨在从文件内的各个实体中提取关系。 与其句级对应方相比,文档级的提取关系要求对多个句子进行推断,以提取复杂的三重关系。 以前的研究通常通过在参考级或实体级的文档绘图上传播信息来完成推理,而不论各种关系之间的相互关系。 在本文件中,我们提出了一个基于蒙面图像重建网络(DRE-MIR)的新的文件级的提取关系模型。 我们用三个公共文件级的提取关系数据集来评估我们的模型,即DocRED、CDR和GDA。 实验结果显示,我们的模型在这三个数据模型中取得了州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州/州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州