Bayesian Physics Informed Neural Networks (B-PINNs) have gained significant attention for inferring physical parameters and learning the forward solutions for problems based on partial differential equations. However, the overparameterized nature of neural networks poses a computational challenge for high-dimensional posterior inference. Existing inference approaches, such as particle-based or variance inference methods, are either computationally expensive for high-dimensional posterior inference or provide unsatisfactory uncertainty estimates. In this paper, we present a new efficient inference algorithm for B-PINNs that uses Ensemble Kalman Inversion (EKI) for high-dimensional inference tasks. We find that our proposed method can achieve inference results with informative uncertainty estimates comparable to Hamiltonian Monte Carlo (HMC)-based B-PINNs with a much reduced computational cost. These findings suggest that our proposed approach has great potential for uncertainty quantification in physics-informed machine learning for practical applications.
翻译:贝叶斯物理知情神经网络(B-PINNs)在推断物理参数和学习基于部分差异方程式的问题的前瞻性解决办法方面受到极大重视,然而,神经网络的过分分界线性质对高维次子推论提出了计算上的挑战,现有的推论方法,例如粒子法或差异推论方法,对于高维后继推论而言,要么计算成本昂贵,要么提供不令人满意的不确定性估计。在本文件中,我们为使用Ensemble Kalman Inversion(EKI)进行高维度推论任务的B-PINNs提出了新的高效推论法。我们发现,我们提出的方法可以得出与以汉密尔顿蒙特卡洛(HMC)为基础的B-PINNs相类似的信息不确定性估计,而计算成本则大大降低。这些研究结果表明,我们提出的方法极有可能在物理学知情的机器学习中为实际应用提供不确定性的量化。</s>