We define a bivariate copula that captures the scale-invariant extent of dependence of a single random variable $Y$ on a set of potential explanatory random variables $X_1, \dots, X_d$. The copula itself contains the information whether $Y$ is completely dependent on $X_1, \dots, X_d$, and whether $Y$ and $X_1, \dots, X_d$ are independent. Evaluating this copula uniformly along the diagonal, i.e. calculating Spearman's footrule, leads to the so-called 'simple measure of conditional dependence' recently introduced by Azadkia and Chatterjee [1]. On the other hand, evaluating this copula uniformly over the unit square, i.e. calculating Spearman's rho, leads to a distribution-free coefficient of determination. Applying the techniques introduced in [1], we construct an estimate for this copula and show that this copula estimator is strongly consistent. Since, for $d=1$, the copula under consideration coincides with the well-known Markov product of copulas, as by-product, we also obtain a strongly consistent copula estimator for the Markov product. A simulation study illustrates the small sample performance of the proposed estimator.
翻译:我们定义了一个双变量, 显示单一随机变量Y$对一组潜在解释性随机变量UX_ 1,\ dots, X_ d$, X_ d$的依附程度。 copula本身包含关于Y$是否完全依赖X_ 1,\ dots, X_ d$, 以及是否Y$和X_ 1,\ dots, X_ d$是独立的信息。 沿着对角线, 即计算Spearman的脚律, 来评估这个千差数, 导致Azadkia和Chatterjee最近推出所谓的“ 有条件依赖的简单度 ” [1. 。 另一方面, 计算Spearman的正方形是否完全依赖$X_ 1, X_ d$, 是否Y美元和 $X_ 1, X_ dots, X_ dots, 和 X. dofficol 的试样系数是独立的。 应用在[ 1] 中引入了这一椰子的估测算器, 显示这个精度非常一致。 因为对于 $=1$d=1, 考虑中的焦拉 也与我们所考虑的模拟的试测算的 一致的DNA 的DNA是 的DNA产品。